Leong & Mihalcea: Measuring the Semantic Relatedness Between Words and Images

Seminar: Distributionelle Semantik jenseits der Wortbedeutung (Matthias Hartung)

Michael Haas, haas@cl.uni-heidelberg.de

22-07-2013
Introduction Multimodal Semantics
Algorithm: Text + Pictures
Results
Questions? Too fast? Ask!
Multimodal Semantics

- Distributional Semantics on text corpora: uni-modal
- Integrate different modalities: multi-modal
 - Feature Norms
 - Pictures
- Why:
 - Obvious things go un-mentioned
 - Human cognition is situated
 → Distributional semantics is like ”learning meaning by listening to the radio”\(^1\)

\(^1\)McClelland, cited according to Johns & Jones, 2011
Algorithm: Text + Pictures

- **Task:** measure semantic relatedness between words and images
- **Data Set:** ImageNet, extension of WordNet
 - Select 167 synsets
 - Select nouns from synsets and glosses
 - Select one image at random from synset
- **How to compare images and words?**
Algorithm: Representation

- For text: build term-document matrix
 - Vector length: 167 documents
- For images: represent image as bag of visual words
Algorithm: Bag of visual words

- General approach for feature extraction from images
 - Feature Detection: split image into partitions
 - Feature Description: represent image as set of vectors
 - Visual Codeword Generation: cluster vectors
Algorithm: Bag of visual words

- Extract 20px square patches at every 10px boundary
- Represent using SIFT descriptors: Scale-Invariant Feature Transform
- Cluster into 1000 code words
 → Image is now represented as a bag of visual code words
CMSM for Sentiment Analysis: Eval Results

Figure: Bruni et al., 2012
Algorithm: Map images into document space

- Represent each code word as vector: distribution over document space
 → Image is represented as set of vectors
- Flatten image representation: sum over all vectors
 → Image is now represented as a single vector in document space
Algorithm: Compare images and words

- Words and images are mapped into document space
- Reduce dimensions using LSA
- Measure similarity: cosine similarity
 → Direct comparison of vectors in *term-document* and *codeword-document* space
Evaluation

- Image-Centered Scenario
 → Given 12 associated words, rank according to relatedness to image

- Arbitrary-Image Scenario
 → Measure similarity between arbitrary images and words irregardless of synset membership

- Gold Standard: extract 12 words from synset, relatedness rated by MTurkers
Evaluation: Baselines

- Random baseline
- Vector-based baseline w/o LSA
- Upper bound: human performance based on annotator data
Evaluation: Results

- **Image-Centered**
 - Vector-based baseline: 0.262 correlation to gold standard
 - LSA-based: 0.339
 - Human upper bound: 0.687

- **Arbitrary-Image**
 - Vector-based: 0.291
 - LSA-Based: 0.353
 - Human upper bound: 0.764

- Adding more synsets brings correlation values to ~ 0.45
Comparing images to text: it works!
More data is better data
How can we enrich textual data with image data?
→ For starters, just concatenate textual vector and pictoral vector (Bruni et al., 2012)